

Welcome to Plogpro’s documentation!

Plogpro is a simple and versatile Python package that can be used for logging,
profiling and more. On top of that, all its functionality is easily customizable
and extendable.

Getting Started

	Installation
	Using PyPI

	Using Anaconda

	From source

	Developers

	User Guide

API Reference

	Logging
	Logger implementations

	Logger Interface

	Profiling
	Profiler implementations

	Profiler Interface

	Progress Bars
	Progress bar implementations

	Progress bar Interface

	Settings and Enumerations

Indices and tables

	Index

	Module Index

	Search Page

Installation

Using PyPI

Plogpro is available on PyPI, which means that it can easily be installed with
pip using:

pip install plogpro

Using Anaconda

When using Anaconda, you can install Plogpro with:

conda install -c wohe plogpro

From source

You can also clone the Plogpro project from Github and install it locally with
pip using:

git clone git@github.com:wohe157/plogpro.git
cd plogpro
pip install .

Alternatively, you can use setup.py directly:

git clone git@github.com:wohe157/plogpro.git
cd plogpro
python setup.py install

Developers

Developers should clone the Plogpro project from Github and install it locally:

git clone git@github.com:wohe157/plogpro.git
cd plogpro
pip install --editable .

User Guide

Logging

Logger implementations

The default implementations of loggers are listed here, these are the classes
that should be used by users.

Note

See Logger for more info on how to use its implementations.

	
class ConsoleLogger

	A logger that writes messages to the console

The messages are written with the following syntax:

[<Type>] <Date> <Time> - <Message>

	
class TextLogger(fname, overwrite=False)

	A logger that writes messages to a text file

The messages are written with the following syntax:

[<Type>] <Date> <Time> - <Message>

	Parameters

	
	fname (str) – The name of the output file

	overwrite (bool, optional) – Whether to overwrite the contents of the output file if it
already exists or to append the messages to the end of the file
(default: False)

Logger Interface

These are the classes that should be used when creating a custom logger.

	
class LogMessage(msg, msg_type)

	Container class for log messages

This class contains all the necessary information about a log message and is
used to send this information from the base class Logger to an actual
implementation of a logger. More specifically, when a user calls the
log() method of a logger, a LogMessage will be created and passed on
to the write_message() implementation.

	Parameters

	
	msg (str) – The message

	msg_type (LogType, optional) – The message type that indicates its severity, this should be one
of the options given by the enumeration LogType
(default: LogType.INFO)

	
msg

	The text message given to the log() function

	Type

	str

	
type

	The type of the log message

	Type

	LogType

	
time

	The time of the log message

	Type

	datetime

	
timestring

	A formatted string with the date and time of the message

	Type

	str

	
class Logger

	Base class that provides an interface for different loggers

To be able to log messages using a logger of your choice, e.g.
TextLogger, create an instance of that logger. You can then use the
method log(msg, msg_type) to actually write a log message to a file.

To implement a new logger, create a class that inherits from Logger and
at least has a method write_message(self, msg) that accepts one
argument: an instance of the LogMessage class. If you need to do
anything once in the beginning or the and, you can override the setup()
and/or teardown() methods respectively.

Warning

The log() method should not be overwritten.

	
log(msg, msg_type=LogType.INFO)

	Write a log message

	Parameters

	
	msg (str) – The message

	msg_type (LogType, optional) – The message type that indicates its severity, this should be one
of the options given by the enumeration LogType
(default: LogType.INFO)

Profiling

Profiler implementations

The default implementations of profilers are listed here, these are the classes
that should be used by users.

Note

See Profiler for more info on how to use its implementations.

	
class TracingProfiler(fname)

	A profiler that outputs a JSON file that can be read by Chrome Tracing

The results will be stored in a JSON file. The contents of this file, i.e.
the profiling results, can be visualized using Chrome Tracing. To open
Chrome Tracing, open a window in Google Chrome and type chrome://tracing
in the address bar.

	Parameters

	fname (str) – The name of the file in which the results will be written

Profiler Interface

These are the classes that should be used when creating a custom profiler.

	
class Profiler

	Base class for profilers

To profile a program, create an instance p of one of the Profiler
implementations and apply the @p.profile decorator to all functions that
should be investigated.

Example:

import plogpro
p = plogpro.TracingProfiler("results.json")

@p.profile
def func()
 # do something ...
 pass

func()

To create a custom profiler, create a subclass of Profiler and implement
the method write(self, name, start_time, end_time) that accepts 3
arguments:

	name: the name of the decorated function

	start_time: the start time in seconds since Epoch

	end_time: the end time in seconds since Epoch

If you need to do anything once in the beginning or the and, you can
override the setup() and/or teardown() methods respectively.

Warning

The profile() method should not be overwritten.

	
profile(func)

	Decorator to use for profiling a function

Progress Bars

Progress bar implementations

The default implementations of progress bars are listed here, these are the
classes that should be used by users.

Note

See ProgressBar for more info on how to use its implementations.

	
class ConsoleProgressBar(nsteps, width=70)

	A text-based progress bar for in a terminal or console

	Parameters

	
	nsteps (int) – The number of steps that the progressbar will go through

	width (int, optional) – The width of the progress bar
(default: 70)

Progress bar Interface

These are the classes that should be used when creating a custom progress bar.

	
class ProgressBar(nsteps)

	Base class that provides an interface for progress bars

To create a progress bar, create an instance of one of its implementations.
The progressbar can then be updated by calling the method update().

To implement a new progress bar, create a class that derives from
ProgressBar and implement the method draw(). This method should draw
the progress bar based on the accessible member variables. If you need to do
anything once in the beginning or the and, you can override the setup()
and/or teardown() methods respectively.

Warning

The update() method should not be overwritten.

	Parameters

	nsteps (int) – The number of steps that the progressbar will go through

	
nsteps

	The number of steps that the progressbar will go through

	Type

	int

	
step

	The current step of the iteration, going from 0 to nsteps

	Type

	int

	
start_time

	The start time of the progress bar in seconds since Epoch

	Type

	float

	
current_time

	The current time of the progress bar in seconds since Epoch

	Type

	float

	
progress()

	Get the progress as a number between 0 and 1

	Returns

	The progress

	Return type

	float

	
update(step=None)

	Update the progressbar

	Parameters

	step (int, optional) – The current step of the operation, the progress will be
increased with one step if not provided
(default: None)

Settings and Enumerations

	
class Config

	A dict-like object that contains the settings for Plogpro

This class is a singleton, which means that every instance contains the same
info and changes to any instance will also apply to every other instance.
Use the standard instance config to avoid any confusion.

Settings can be accessed using square brackets, e.g.:

print(config['release'])

will print the type of release to the console. To change a setting, use the
same syntax:

config['release'] = ReleaseType.DEBUG

will change the release type to DEBUG, which is the most verbose type.
The list of attributes below shows the possible cofiguration settings.

Warning

Only change the settings at the beginning of your program. Changing the
settings in a later stage can result in unexpected errors. For example,
the setup() or teardown() methods that are available in most
base classes will not be called if
config['release'] == ReleaseType.RELEASE_QUIET, therefore a file
that needs to be opened and closed in those methods will not be
available is the type of release changes from
ReleaseType.RELEASE_QUIET to a more verbose type after creating e.g.
a logger or profiler.

	
release

	The state of the software that uses Plogpro

	Type

	ReleaseType

	
class LogType(value)

	An enumeration for indicating the severity of a log message

	
DEBUG

	Useful information for debugging only

	
INFO

	General information

	
WARNING

	A warning to the user

	
ERROR

	Information about an error that has occurred

	
FATAL

	Information about an error that resulted in a crash

	
class ReleaseType(value)

	An enumeration for indicating the state of the software using Plogpro

	
DEBUG

	Everything is enabled and as verbose as possible

	
VERBOSE

	Debugging log messages (LogType.DEBUG) are disabled, but other
messages will still be shown and profilers still work

	
RELEASE

	Only log messages indicating an error (LogType.ERROR or higher)
are shown and profilers are disabled

	
RELEASE_QUIET

	All loggers and profilers are disabled

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 plogpro	

 	
 	
 plogpro.logger	

 	
 	
 plogpro.logger_impl	

 	
 	
 plogpro.profiler	

 	
 	
 plogpro.profiler_impl	

 	
 	
 plogpro.progressbar	

 	
 	
 plogpro.progressbar_impl	

 	
 	
 plogpro.settings	

Index

 C
 | D
 | E
 | F
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W

C

 	
 	Config (class in plogpro.settings)

 	ConsoleLogger (class in plogpro.logger_impl)

 	
 	ConsoleProgressBar (class in plogpro.progressbar_impl)

 	current_time (ProgressBar attribute)

D

 	
 	DEBUG (LogType attribute)

 	(ReleaseType attribute)

E

 	
 	ERROR (LogType attribute)

F

 	
 	FATAL (LogType attribute)

I

 	
 	INFO (LogType attribute)

L

 	
 	log() (Logger method)

 	Logger (class in plogpro.logger)

 	
 	LogMessage (class in plogpro.logger)

 	LogType (class in plogpro.settings)

M

 	
 	
 module

 	plogpro.logger

 	plogpro.logger_impl

 	plogpro.profiler

 	plogpro.profiler_impl

 	plogpro.progressbar

 	plogpro.progressbar_impl

 	plogpro.settings

 	
 	msg (LogMessage attribute)

N

 	
 	nsteps (ProgressBar attribute)

P

 	
 	
 plogpro.logger

 	module

 	
 plogpro.logger_impl

 	module

 	
 plogpro.profiler

 	module

 	
 plogpro.profiler_impl

 	module

 	
 plogpro.progressbar

 	module

 	
 	
 plogpro.progressbar_impl

 	module

 	
 plogpro.settings

 	module

 	profile() (Profiler method)

 	Profiler (class in plogpro.profiler)

 	progress() (ProgressBar method)

 	ProgressBar (class in plogpro.progressbar)

R

 	
 	release (Config attribute)

 	RELEASE (ReleaseType attribute)

 	
 	RELEASE_QUIET (ReleaseType attribute)

 	ReleaseType (class in plogpro.settings)

S

 	
 	start_time (ProgressBar attribute)

 	
 	step (ProgressBar attribute)

T

 	
 	TextLogger (class in plogpro.logger_impl)

 	time (LogMessage attribute)

 	
 	timestring (LogMessage attribute)

 	TracingProfiler (class in plogpro.profiler_impl)

 	type (LogMessage attribute)

U

 	
 	update() (ProgressBar method)

V

 	
 	VERBOSE (ReleaseType attribute)

W

 	
 	WARNING (LogType attribute)

 nav.xhtml

 Table of Contents

 		
 Welcome to Plogpro’s documentation!

 		
 Installation

 		
 Using PyPI

 		
 Using Anaconda

 		
 From source

 		
 Developers

 		
 User Guide

 		
 Logging

 		
 Logger implementations

 		
 Logger Interface

 		
 Profiling

 		
 Profiler implementations

 		
 Profiler Interface

 		
 Progress Bars

 		
 Progress bar implementations

 		
 Progress bar Interface

 		
 Settings and Enumerations

_static/file.png

_static/minus.png

_static/plus.png

